INDUSTRIAL TESTING LABORATORY

170426-03I2 Page 1 of 4 Report No.

TEST REPORT

Report Date: 15 May 2017

Aura® 196 Prismatic Fl. Yellow/Green Project Name:

Retroreflective Sheeting

Batch # 30P78-1

Submitted by: Aura Optical Systems

Ft. Worth, TX 76118

Test Laboratory: Calcoast - ITL

San Leandro, CA 94577

Three (3) 8.0" x 8.0" panels premade by Aura Products Tested:

SUMMARY

Above samples were submitted for measurement of Coefficient of Retroreflection and Daytime Color and Luminance per ASTM D4956.

Coefficient of Retroreflection measured at entrance angles of $-4\,^{\circ}$ and $+30\,^{\circ}$ and observation angles of 0.2°, 0.5°, and 1.0° without comparison to any sheeting class or reflectivity table.

Daytime Color and Luminance compared to ASTM D4956-16b Tables 2 and 11 non-Type V requirements.

Written by:

Approved by:

Douglas G. Cummins

Photometric Engineer

Mark A. Evans

Laboratory Director

Report No.: 170426-0312

TEST DATA SHEET

Project Name: Aura® 196 Prismatic Fl. Yellow/Green

Retroreflective Sheeting

Batch # 30P78-1

6.2 Coefficient of Retroreflection

Requirement: none

Test Method: ASTM E810 - Test Distance 100 feet (30.5 m)

Entrance angle = β_1 . β_2 = 0. Observation Angle = α

Projector: Hoffman GPS-102 (Illuminant A, 1.0 fc, 30" diameter)

Sample Area: 8.0 in. x 8.0 in, 0.444 ft²

Coefficient of Retroreflection (R_A) determined by measuring three (3) aluminum panels at two rotation angles (ϵ =0° and ϵ =90°) and averaging. ϵ =0° arbitrarily defined as orientation with roll direction as indicated on label parallel to projector/detector half-plane (see photos).

Unknown if sampling in accordance with D4956 Section 9.1

Units: Candela per footcandle per square foot (Candela per Lux per square meter)

0.2° Observation Angle

Entrance Angle:		-4°				+30°			
Sample		0°	90°	Avg(R _A)	Min $R_{\mathtt{A}}$	0°	90°	Avg(R _A)	Min $R_{\mathtt{A}}$
196	#1	416.1	358.6	387.3		176.4	188.2	182.3	
	#2	454.7	389.5	422.1		203.2	210.1	206.6	
Fl. Y/G	#3	428.6	369.5	399.1		187.8	196.9	192.3	
	Average	433.1	372.5	402.8	_	189.1	198.4	193.7	_

0.5° Observation Angle

Entrance Angle:		-4°				+30°			
Sample		0°	90°	Avg(R _A)	Min R_A	0 °	90°	Avg(R _A)	Min $R_{\mathtt{A}}$
	#1	188.3	230.1	209.2		114.0	105.8	109.9	
196	#2	201.8	248.1	224.9		122.4	118.0	120.2	
Fl. Y/G	#3	202.5	242.1	222.3		116.2	112.6	114.4	
, -	Average	197.5	240.1	218.8	_	117.5	112.1	114.8	_

1.0° Observation Angle

Entrance Angle:		-4°				+30°			
Sample		0°	90°	Avg(R _A)	Min R_A	0°	90°	Avg(R _A)	Min $R_{\mathtt{A}}$
	#1	59.1	53.7	56.4		34.6	34.5	34.6	
196	#2	53.6	53.2	53.4		34.4	32.7	33.6	
Fl. Y/G	#3	52.8	53.4	53.1		31.9	32.6	32.3	
	Average	55.2	53.4	54.3	_	33.7	33.3	33.5	_

Report No.: 170426-0312

TEST DATA SHEET

Project Name: Aura® 196 Prismatic Fl. Yellow/Green

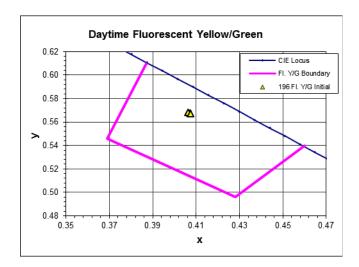
Retroreflective Sheeting

Batch # 30P78-1

6.3 Daytime Color and Luminance

Requirement: ASTM D4956 Tables 2 and 11 (non-Type V Sheeting)

Test Method: ASTM E308, E1347, E1349, E991, E1164

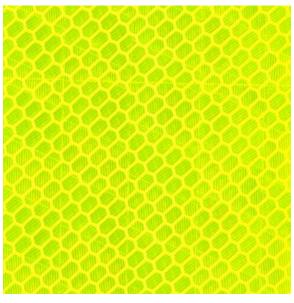

(Illuminant D65, 2° Observer, Annular 45/0 Geometry)

Average of 8 reads, each read oriented 45° apart

Instrument: Hunterlab Colorflex A60 Spectrocolorimeter (No SCF available)

Product		v	7.7	Y			
Froduct		X	У	Measured	Minimum	Maximum	
106	#1	0.4073	0.5673	96.69			
196 Fl. Y/G	#2	0.4065	0.5680	95.18	60	_	
F1. 1/G	#3	0.4074	0.5671	96.05			

Samples meet Daytime Color and Luminance requirements.


Report No.: 170426-0312

TEST DATA SHEET

Project Name: Aura® 196 Prismatic Fl. Yellow/Green Retroreflective Sheeting

Batch # 30P78-1

Photographs

Sheeting Orientation